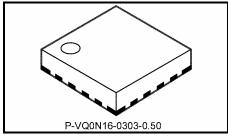
TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic

TB2140FTG

Stereo Headphone Amplifier

The TB2140FTG is a stereo headphone amplifier IC.

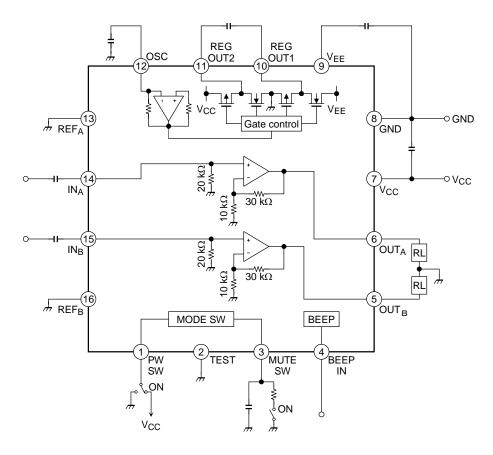

It is an unnecessary output coupling capacitor and a power amplifier common is GND.

Moreover, an external capacitor is 2.2 μF or less, so that it is suitable for a small portable set.

Features

- Output coupling capacitor less and a power amplifier common is GND
- An external capacitor is 2.2 μF or less.
- Voltage gain: GV = 12dB (typ.)
- Built-in beep function.
- · Built-in power switch
- Built-in power mute function
- Operating supply voltage range: Ta = 25°C

 V_{CC} (opr) = 2.0 to 3.6 V



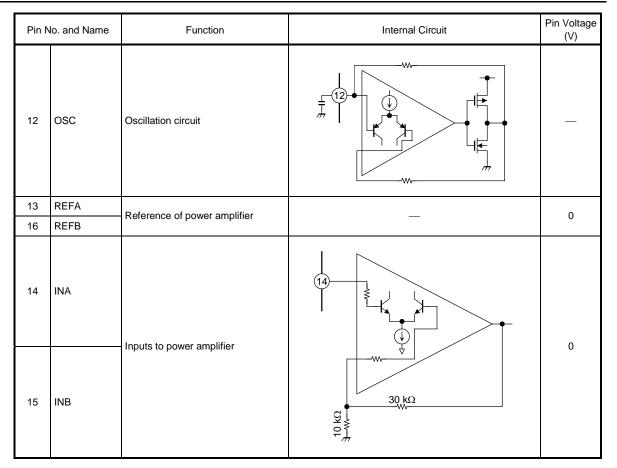
Weight: 0.01 g (typ.)

Marking: B26

Block Diagram

TOSHIBA

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for explanatory purpose.


Pin Descriptions

The equivalent circuit diagrams maybe simplified or some parts of them may be omitted for explanatory purpose.

Pin voltage: typical pin voltage for test circuit when no signal is applied. $V_{CC}=3\ V,\,Ta=25^{\circ}C$

Pin No. and Name		Function	Internal Circuit	Pin Voltage (V)	
1	PW SW	Power switch [IC ON: H level IC OFF: L level	Vcc Vcc	3.0	
4	BEEP IN	Beep signal input If the beep function is not used, this pin is connected to GND		_	
2	TEST	TEST This pin should be connected to GND.	_	0	
3	MUTE SW	Mute switch	3	1.3	
5	ОИТВ	Outputs from power amplifier	V _{CC} 6	0	
6	OUTA	Capac nom ponor ampinor	-K VEE		
7	vcc	_	7 • 0	3.0	
8	GND	_		0	
9	VEE	Negative voltage supply	***************************************	-3.0	
10	REG OUT1	Outputs from switching regulator	10 +	_	
11	REG OUT2	circuit	9	_	

Absolute Maximum Ratings (Ta = 25°C)

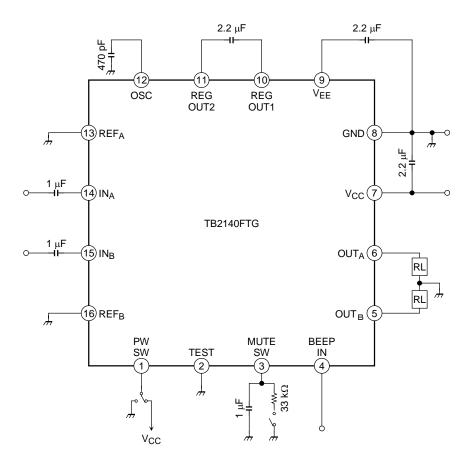
Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	3.6	V	
Output current	I _{o (peak)}	100	mA	
Power dissipation	P _D (Note)	275	mW	
Operating temperature	T _{opr}	-25 to 75	°C	
Storage temperature	T _{stg}	-55 to 150	°C	

Note: Derated by 2.2 mW/ $^{\circ}$ C above Ta = 25 $^{\circ}$ C

The absolute maximum ratings of a semiconductor device are a set of specified parameter values, which must not be exceeded during operation, even for an instant.

If any of these rating would be exceeded during operation, the device electrical characteristics may be irreparably altered and the reliability and lifetime of the device can no longer be guaranteed.

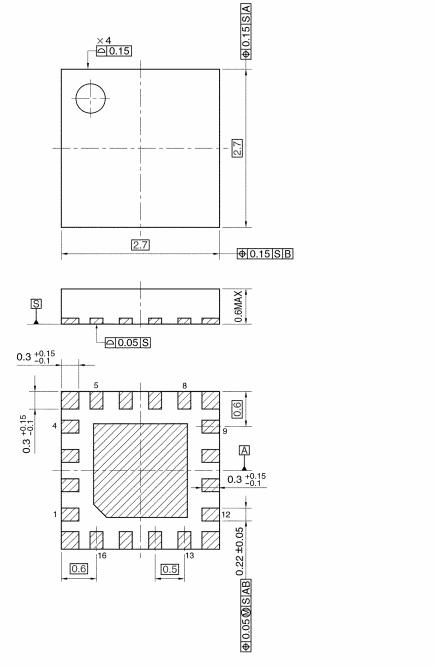
Moreover, these operations with exceeded ratings may cause break down, damage and/or degradation to any other equipment.


Applications using the device should be designed such that each absolute maximum rating will never be exceeded in any operating conditions.

Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set forth in this documents.

Electrical Characteristics (Unless otherwise specified, V_{CC} = 3 V, R_g = 600 Ω , R_L = 32 Ω , f = 1 kHz, Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
	ICCQ1	IC OFF mode	_	_	5	uA
Quiescent supply current	ICCQ2	Power mute mode	_	0.35	0.55	mA
	ICCQ3	No signal mode	_	1.3	2.8	mA
Power supply current during drive	ICC	0.1 mW*32 Ω/2 ch	_	4.0	_	mA
Switching regulator oscillation frequency	fosc		70	90	110	kHz
Voltage gain	Gv	$V_0 = -20 dBV$	10.5	12	13.5	dB
Channel balance	СВ	$V_0 = -20 dBV$	1.5	0	+1.5	dB
Output power	Po	THD = 10%	22	28	_	mW
Total harmonic distortion	THD	P _o = 1 mW	_	0.1	0.3	%
Output noise voltage	Vno	$R_g = 600 \Omega$, IHF-A		-100	-92	dBV
Cross talk	СТ	$V_0 = -20 dBV$	-50	-60	_	dB
Ripple rejection ratio	RR	f _r = 100 Hz	-45	-60	_	dB
Muting attenuation	ATT	$V_0 = -20 dBV$	-90	-110	_	dB
Beep signal output level	Vo (BEEP)		-55	-50	-45	dBV
Power on voltage	V1 (ON)		V _{CC} × 0.8	_	V _{CC}	V
Power off voltage	V1 (OFF)		0	_	V _{CC} × 0.2	V
Power mute on voltage	V3 (ON)	Monitor : Switch voltage	0		0.15	V


Test Circuit

Components in the test circuits are only used to obtain and confirm the device characteristics. These components and circuits do not warrant to prevent the application equipment from malfunction or failure.

Package Dimensions

P-VQ0N16-0303-0.50 Unit: mm

Note: The die length by the projective technique from a package top face prescribes the part of a package side-face part, and it is made into the 0.15 maximum.

The flux of solder cream should use RMA type or RA type.

Weight: 0.01 g (typ.)

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
 TOSHIBA or others. 021023 C
- The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-37Pb solder Bath
 - · solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - solder bath temperature = 245°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux